Cervical IGS15 and PGR mRNA expression during early pregnancy in Holstein heifers

<u>Graciana R. Mendina</u>¹; Victoria de Brun²; Jorge Gil¹; Maria Victoria Pons¹; Rodrigo Vivian³; Maria de Lourdes Adrien¹; Mario Binelli⁴; Ana Meikle²

¹ Facultad de Veterinaria, Universidad de la República, Paysandú, Uruguay

² Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay

³ Facultad de Agronomía, Universidad de la República, Paysandú, Uruguay

⁴ Department of Animal Sciences, University of Florida, Gainesville, Florida, USA

We aimed to determine the effect of pregnancy on gene expression of Interferon-stimulated gene 15 (ISG15) and progesterone receptor (PGR) in the cervix of Holstein heifers. Sixteen heifers were synchronized with two injections of prostaglandin (Estrumate[®], MSD, Argentina) separated by eleven days. Animals were sham-inseminated with semen extender only (open, n=6), or inseminated with frozen semen from one bull and were diagnosed pregnant by ultrasound at day thirty post insemination (pregnant, n=10). Blood by coccygeal venipuncture and cervical cells samples using a cytological brush were obtained at 14, 16, and 18 after insemination. Serum progesterone (P4) was determined by a solid-phase radioimmunoassay using a commercial kit. Total RNA was obtained with Trizol reagent (Life Technologies) and the concentration and purity of the RNA was determined using a spectrophotometer (nanodrop ND 1000). Total RNA was treated with DNase using a DNA-freeTM kit (Ambion, Austin, TX, USA). For each sample, copy DNA (cDNA) was synthesized by reverse transcription using a SuperScript III transcriptase (Invitrogen) with random primers and total RNA as a template. ISG15 and PGR gene expression was determined by real-time PCR (qPCR) using the Rotor-GeneTM 6000 kit (Corbett Life Sciences, Sydney, Australia). Gene expression was calculated by relative quantification to the exogenous control (β-actin) and normalized to the geometric mean of the endogenous control, taking into account the respective amplification efficiencies. Serum progesterone concentrations and the transcripts determined by real-time PCR were analyzed by a Glimmix procedure (Proc Glimmix; SAS Studio®) including group, day and their interaction as a fixed effect. Significance was considered with alpha \leq 0.05, and tendency between 0.05 and 0.10. Serum progesterone concentrations were higher in pregnant than open heifers (6.5 \pm 0.48 vs 4.2 \pm 0.57 ng/mL, P=0.0077). There was no effect of day or the interaction between group and day on progesterone concentrations. The cervical expression of ISG15 mRNA was greater in pregnant than open heifers (1.76 ± 0.46 vs 0.13 ± 0.04, respectively, P<0.0001), being different in all days (Fold-Change: 12.0, 21.5, and 9.4, on days 14, 16, and 18, respectively). There was an interaction between group and day (P=0.033), as pregnant heifers presented greater ISG15 mRNA expression on day 16 than on day 14 and 18 (P<0.05), but no differences according to the day were found in open heifers. The PGR mRNA expression tended to be affected by the interaction between group and day (P=0.0779), while open heifers increased during the estrous cycle, pregnant heifers maintained PGR expression. We concluded that the cervical expression of ISG15 mRNA could be used as a pregnancy biomarker as early as day 14 post insemination.